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Spin-1 aggregation model in one dimension

M. Girardi* and W. Figueiredo†

Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, Santa Catarina, Brazil
~Received 5 July 2000!

We studied a simple model of aggregation in one dimension that resembles the self-assembly of amphiphiles
in an aqueous solution. We mapped the water and amphiphilic molecules by Ising spin variables forS51. The
zero component of spin represents the water molecules, while the remaining components (61) account for the
amphiphilic molecules. We defined an aggregate in one dimension by a set of spin components (61) placed
between two zero spin components. There is no difference between up and down components of the spins
inside the aggregates. In this way what really matters is the square of the spin component. The grand-canonical
partition function and the probability of formation of different aggregate sizes were calculated by the transfer
matrix method. We have shown that for any value of the chemical potential and temperature, the system does
not exhibit the typical aggregate size distribution which is observed in micellar solutions at low concentrations.
The distribution curve for the aggregate size does not show the minimum and the maximum as a function of
the concentration which is the signature of the appearance of micelles. We can say that this one-dimensional
model does not present any phase transition nor a transition from the micellar to nonmicellar state.

PACS number~s!: 82.60.Lf, 64.75.1g, 64.60.Ht
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I. INTRODUCTION

It is well known that one-dimensional systems with sho
range interactions do not exhibit a phase transition from
ordered to disordered state@1#. In spite of this fact, short-
range forces can give rise to the formation of islands c
taining a different number of particles at finite temperatu
In this work we are concerned with the formation of a spec
type of aggregates, which we think can mimic the se
assembly of amphiphilic molecules in aqueous solutio
@2–5#. Some recent models have been presented in the lit
ture to describe the linear self-assembly of molecules. He
erson @6# considered as an example of chain forming a
phiphilic solution, a mixture of solvent~A! and solute~B!
with repulsive interactions between them, opposed to the
teractions (AA) and (BB) considered attractive and of equ
magnitude as that of the (AB) pair. He obtained an exac
expression for the cluster distribution and showed that
model cannot display a phase transition. Duque and T
zona@7# presented a simple one-dimensional model with m
lecular interactions favoring the formation of clusters with
defined optimal size. Their model is a system of hard rods
fixed length, moving along a line and with internal degre
of freedom. They found an exact solution that incorpora
excluded volume effects and molecular attraction. They h
shown that, at low molecular concentrations, the curve of
chemical potential against molecular density changes
slope at a given concentration. This could be interpreted
the equivalent to the CMC~critical micellar concentration!,
which is in qualitative agreement with real systems of a
phiphilic molecules. Kolomeisky and Widom@8# also con-
sidered a one-dimensional lattice model for the hydropho
attraction. In their model, the accomodation of the sol
molecules in the lattice depends on the state of near
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neighbor solvent molecules. The model was exactly sol
in one dimension, and they found the condition of hydroph
bicity at temperatureT as a function of the interaction pa
rameters of the model, and the number of possible state
the solvent molecules. The model we consider here cons
of a linear array of sites, where each site is occupied b
variable with three possible values. One of these values~0!
represents the solvent molecules, while the other two (61)
are associated with the amphiphilic molecules. We use
spin 1 Ising model to describe the interactions between n
est neighbor sites, and we restrict the number of compon
equal to zero to a fixed value, that is, the number of solv
molecules determines the value of the concentration of
solution. We use the transfer matrix method to compute
grand-canonical partition function of the model, and to c
culate the probability of finding an aggregate of a given si
We also performed Monte Carlo simulations on this mod
and we have seen that the evolution of the system toward
equilibrium states is driven by two simultaneous stocha
processes. The dynamics processes that fit our model ar
following: one that conserves the order parameter, of
exchange Kawasaki type@9#, and the other, where the orde
parameter is not conserved, related to the single spin
Glauber kinetics@10#. We show that this model, albeit ver
simple, is capable of predicting a change in the slope of
curve of the free amphiphilic molecules against total conc
tration. We also show that the distribution curve for the a
gregate sizes does not exhibit the local minimum and ma
mum characteristic of micellized systems@5#. For a typical
system in its micellar state, the local minimum in th
aggregate-size distribution curve lies always below the c
centration of free amphiphiles, and it is different from ze
The local maximum in this curve, which appears for larg
values of the aggregate size than that observed at the m
mum, indicates the typical size of the micelles. This work
organized as follows. In Sec. II we present the model and
calculations. In Sec. III we describe the Monte Carlo sim
lations. In Sec. IV we present our results and conclusion
8344 ©2000 The American Physical Society
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PRE 62 8345SPIN-1 AGGREGATION MODEL IN ONE DIMENSION
II. MODEL AND CALCULATIONS

We consider a lattice model to describe the aggregatio
amphiphilic molecules in a solvent. The simplest model
can imagine is a linear array of sites, where each site
occupied by an amphiphilic or by a solute molecule. W
choose to represent these molecules in the language of s
and we make use of the spin 1 Ising model, with three p
sible components. In this way, to each solute molecule
associate the zero component of the spin, and the two o
components (61) are attached to the amphiphilic molecule
For instance, the values (61) are related to the hydrophob
and hydrophilic properties of the amphiphilic molecules.
two nearest neighbor amphiphiles have the same value o
spin components, it can be thought that two hydrocarb
chains are touching each other in a real solution. On
other hand, two antiparallel spin components mimic the
pulsion between the hydrophilic head and the hydropho
chain of the amphiphile. We define an aggregate in one
mension by a set of spin components (61) placed between
two zero spin components. There is no difference betwee
up and down component of the spin inside the aggregate
the different orientations of spins can take into account
possible values of the aggregate energy. In order to simu
a fixed concentration in the real solution, in this model,
number of zero spin components is made constant. We
fine the following Hamiltonian model for the system:

H52J(
i 51

L

SiSi 11 , ~1!

where J represents the coupling constant between nea
neighbor spins, andL is the linear size of the lattice. By
imposing periodic boundary conditions, we haveSL115S1.
The constraint of constant number of zero spin compone
can easily be handled by employing the formalism of
grand-canonical ensemble. The grand-partition function
expressed by the equation

J5 (
N50

L

e2bmNZ, ~2!

whereb51/kBT, andkB is the Boltzmann constant.m is the
chemical potential,N5( i 51

L (Si)
2 is the number of amphi-

philes, andZ is the canonical partition function for a fixedN.
The grand-partition function can also be written in the fo

J5(
$Si %

)
i 51

L

R~Si ,Si 11!, ~3!

where R(Si ,Si 11)5ebJSiSi 111(bm/2)(Si )
21(bm/2)(Si 11)2

, are
the elements of the 333 transfer matrix. Finally, in the ther
modynamic limit, the grand-canonical potential density is

F52~b!21ln~l!, ~4!

wherel is the largest eingenvalue of the transfer matrix t
can be written as
of
e
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1

2 F11
a

b
1ab

1AS 122
a

b
22ab1

a2

b2
12a21a2b218aD G ,

~5!

and we defineda5exp(bm) andb5exp(bJ).
In the next step we define the probability to find an a

gregate of sizen in the system. It is chosen as the sequen
(0 6 1 6 1 6 1•••6 1 6 1 0), where we haven nonzero
spin components between two zero components. There
the probabilility is given by

P~Sk ,Sk11 , . . . ,Sk1n11 ,Sk1n12/0,61, . . . ,61,0!

5P~S!

5
1

J
^dSk,0~12dSk11,0!•••~12dSk1n11,0!dSk1n12,0&

~6!

where the brackets mean

^«&5(
$Si %

)
i 51

L

«ebJSiSi 111(bm/2)(Si )
21(bm/2)(Si 11)2

, ~7!

and thedSk,0 are the delta’s Kronecker. DefiningdSk,051

2Sk
2 , and using the transfer matrix, we can write the eq

tion

P~S!5
1

J
Tr@~U21RU!L2n21U21~12S2!R•••R

3~12S2!U#, ~8!

where Tr means the trace of the matrix,U is the matrix that
diagonalizes the transfer matrixR, 1 is the unity matrix and
S is the matrix representation of the spin. This last equat
can be used, after we take the thermodynamic limitL→`, to
find the distribution of the aggregate size as a function
temperature and the chemical potential. Also using the
malism of the transfer matrix we obtain, in the thermod
namic limit, the density of amphiphiles, that is given by

r5
1

4

~bc1ab22b23a!~2b21bc2b1a1ab2!

bc~ab22a2b1b2!
, ~9!

where

c5AS 122
a

b
22ab1

a2

b2
12a21a2b218aD .

III. MONTE CARLO SIMULATIONS

We have performed Monte Carlo simulations in order
understand the underlying mechanism that leads the sys
towards its equilibrium state. We used linear sizes up toL
5104 and we have taken into account periodic bound
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8346 PRE 62M. GIRARDI AND W. FIGUEIREDO
conditions. We also used different initial random configu
tions to guarantee that the final equilibrium state is the sa
First of all, we define the concentration by fixing the numb
of zero spin component in the system. The dynamics e
ployed here is a mixture of two different stochastic proces
@11#: one of them is the exchange Kawasaki process, wh
two nearest neighbor spins are exchanged accordingly
the Metropolis prescription@12#. For this dynamical proces
the order parameter is conserved, which in our case
equivalent to keep constant the concentration of the solu
~ the number of zero spin component is fixed!. The other
dynamical process used here is the single spin-flip Glau
kinetics where a given61 spin is also flipped if it satisfies
the Metropolis rule. This special Glauber mechani
changes the order parameter without changing the conce
tion. We follow the steps described below to find the eq
librium states of the system for given values of temperatu
concentration andq, that gives the probability to perform th
Kawasaki process in each step@the probability of choose the
Glauber process is (12q)#: we choose at random a site
the lattice, and a random number to select the proces
apply. If the Kawasaki process is chosen, we select at
dom a nearest neighbor of the given site and we excha
them if they satisfies the requirements of Metropolis p
scription. On the other hand, if the Glauber process is c
sen, we only flip the given spin if it is nonzero and if
satisfies the Metropolis rule. To attain the equilibrium w
need nearly 23104 Monte Carlo steps~MCs!, where each
MCs representsL random trials to select a spin in the lattic
After thermalization we used 105 MCs to obtain the mean
value of the aggregate size distribution.

IV. RESULTS AND CONCLUSIONS

We exhibit in Fig. 1 the plot of the isotherm of the re
duced chemical potencial (bm) as a function of the numbe
density of amphiphiles (r). It is easy to see, that in the lim

FIG. 1. Reduced chemical potentialbm versus total concentra
tion r. This isotherm was obtained forbJ52.5.
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m→` the lattice is saturated by amphiphiles, and this cor
sponds, in our case, to the usualS51/2 Ising model. In the
regime of very small densities, we have almost isolated a
phiphiles, and the behavior is that of the ideal gas, wh
(bm) is a logarithmic function of the density. In Fig. 2, w
show the density of isolated amphiphiles as a function of
total density for a fixed temperature. As to be expected
very small densities, the slope of the curve is equal to
However, slightly increasing the total density, the slope
the curve in Fig. 2 decreases, and we can associate this
with the appearance of small aggregates inside the solu
The plot of Fig. 2 resembles with the typical CMC curv
observed in micellar systems. However, this is not suffici
to characterize these aggregates as being true micelles.
well accepted in the literature of micellar systems@5# that,
with the exception of CMC curves, to characterize a tr
micellar aggregate, it is necessary the presence of a l
minimum and a local maximum in the distribution curve
aggregates. We already used this property to study the
havior of two- and three-dimensional diluted systems a
function of temperature@13,14#. We have shown in these
works that the parameter that controls the micellization p
cess is the difference in height between the maximum
the minimum of the distribution curve. This difference
height vanishes linearly with temperature in two dimensio
while it vanishes quadratically in three dimensions. In bo
cases we defined a temperature at which the differenc
height becomes zero, and it represents a transition from
micellar to a nonmicellar state. We present in Fig. 3 the p
we obtain for the distribution curve of aggregate sizen for
the same temperature and concentration in the range of
2. As we can see, the distribution curve is monotonica
decreasing with the aggregate size. Then, there is no typ
aggregate, and the system does not exhibit a true mice
behavior. The behavior observed in Fig. 3 is qualitatively
same up to densities of 20%. For higher values of dens
the curve exhibits a single local maximum, but never sho

FIG. 2. Free amphiphile concentration as a function of to
concentration forbJ50.5. The dashed line indicates the ideal g
behavior.
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PRE 62 8347SPIN-1 AGGREGATION MODEL IN ONE DIMENSION
up the corresponding local minimum, as we can see in Fig
for the particular value of densityr550%. The general be
havior observed in Figs. 3 and 4, can be obtained from F
5, where we exhibit, for each aggregate size, the densit
all molecules aggregated as a function of the total dens
From this very simple one-dimensional model, we can c
clude that it cannot support the existence of micelles.
also exhibit in Fig. 4 the distribution curve of aggregate siz
obtained through Monte Carlo simulations forq51/2. For
instance, in Fig. 6, choosingq50, that is, only the Glaube
dynamics is present, the distribution of aggregate size
exactly that random one that we generate at the begginin
the simulation. This is expected, because the Glauber pro

FIG. 3. Distribution functionnr(n) as a function of the size o
the aggregatesn for total concentrationr55.5% andbJ52.5. The
lines serve to guide the eyes.

FIG. 4. Distribution functionnr(n) as a function of the size o
the aggregatesn for total concentrationr550% andbJ52.5. The
line represents the exact solution and the small circles are the
sults of Monte Carlo simulation forq51/2.
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cannot change the size of the aggregates at any time.
only effect here is to change the value of order parame
which is reflected only in the energy of the aggregates.
the other hand, forq51, that is, using only the exchang
Kawasaki dynamics, the simulation results are still differe
from the exact values. This happens because with this
namics, which conserves the order parameter, only a fi
region of the phase space is explored. Finally, for any ot
value ofq, the simulation curve and the exact one coinci
for all aggregate sizes. This clearly indicates that both

re-

FIG. 5. Distribution functionnr(n) as a function of the total
concentrationr for different aggregate sizes, as indicated in t
figure. We usedbJ52.5.

FIG. 6. Distribution functionnr(n) as a function of the size o
the aggregatesn for bJ52.5 and total concentrationr550%. The
full line is the exact result and the connected circles repres
Monte Carlo simulation results forq51 ~pure Kawasaki dynam-
ics!. The connected crosses give Monte Carlo results forq50 ~pure
Glauber dynamics!.
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8348 PRE 62M. GIRARDI AND W. FIGUEIREDO
namical processes are essential to describe the evolutio
the system towards the equilibrium states. Figure 7 disp
the agreement between simulation and the exact results
the density of free amphiphiles as a function of total conc
tration. In conclusion, we have presented a simple o

FIG. 7. Free amphiphile concentration as a function of to
concentration forbJ52.5. The full line is the exact result an
crosses represent the Monte Carlo results forq51/2.
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dimensional model of aggregation of amphiphiles to und
stand the process of micellization. The model was map
onto a spinS51 Ising model where the density of the sol
tion was associated to the number of zero spin compone
We were able to solve it exactly to obtain the densities
aggregate sizes as a function of total density, temperat
and the chemical potential. We also performed Monte Ca
simulations on this model and we demonstrated that the e
librium states can only be attained through a combination
Glauber and Kawasaki dynamical processes. The model
hibits some characteristics similar to that of micellar sy
tems, but the aggregate-size distribution curve does not s
up the minimum and maximum that must be present in
micellized system. Although in Fig. 4 we observe a loc
maximum, we cannot say that this behavior caracterize
true micellar system. The presence of the minimum in
distribution curve, below the free amphiphile concentratio
is necessary. The disappearance of this minimum would l
to the coalescence of the two relaxation processes invo
in the kinetics of micellization: the fast process, which a
counts for the exchange of monomeric surfactants betw
micelles and solution, and the slow process, attributed to
micelle formation breakdown@15#. The model does no
present any phase transition, and the transition from the
cellar to nonmicellar state is absent.
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