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Spin-1 aggregation model in one dimension
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We studied a simple model of aggregation in one dimension that resembles the self-assembly of amphiphiles
in an aqueous solution. We mapped the water and amphiphilic molecules by Ising spin variaBled fofhe
zero component of spin represents the water molecules, while the remaining companghectount for the
amphiphilic molecules. We defined an aggregate in one dimension by a set of spin companeEntsldced
between two zero spin components. There is no difference between up and down components of the spins
inside the aggregates. In this way what really matters is the square of the spin component. The grand-canonical
partition function and the probability of formation of different aggregate sizes were calculated by the transfer
matrix method. We have shown that for any value of the chemical potential and temperature, the system does
not exhibit the typical aggregate size distribution which is observed in micellar solutions at low concentrations.
The distribution curve for the aggregate size does not show the minimum and the maximum as a function of
the concentration which is the signature of the appearance of micelles. We can say that this one-dimensional
model does not present any phase transition nor a transition from the micellar to nonmicellar state.

PACS numbes): 82.60.Lf, 64.75+9, 64.60.Ht

[. INTRODUCTION neighbor solvent molecules. The model was exactly solved
in one dimension, and they found the condition of hydropho-
It is well known that one-dimensional systems with short-bicity at temperaturd as a function of the interaction pa-
range interactions do not exhibit a phase transition from amameters of the model, and the number of possible states of
ordered to disordered staf&]. In spite of this fact, short- the solvent molecules. The model we consider here consists
range forces can give rise to the formation of islands conef a linear array of sites, where each site is occupied by a
taining a different number of particles at finite temperaturevariable with three possible values. One of these valOgs
In this work we are concerned with the formation of a specialrepresents the solvent molecules, while the other twd )
type of aggregates, which we think can mimic the self-are associated with the amphiphilic molecules. We use the
assembly of amphiphilic molecules in aqueous solutionspin 1 Ising model to describe the interactions between near-
[2-5]. Some recent models have been presented in the litergst neighbor sites, and we restrict the number of components
ture to describe the linear self-assembly of molecules. Hendequal to zero to a fixed value, that is, the number of solvent
erson[6] considered as an example of chain forming am-molecules determines the value of the concentration of the
phiphilic solution, a mixture of solventA) and solute(B)  solution. We use the transfer matrix method to compute the
with repulsive interactions between them, opposed to the ingrand-canonical partition function of the model, and to cal-
teractions AA) and BB) considered attractive and of equal culate the probability of finding an aggregate of a given size.
magnitude as that of theAB) pair. He obtained an exact We also performed Monte Carlo simulations on this model,
expression for the cluster distribution and showed that thend we have seen that the evolution of the system towards its
model cannot display a phase transition. Duque and Taraequilibrium states is driven by two simultaneous stochastic
zona[ 7] presented a simple one-dimensional model with mo-processes. The dynamics processes that fit our model are the
lecular interactions favoring the formation of clusters with afollowing: one that conserves the order parameter, of the
defined optimal size. Their model is a system of hard rods oéxchange Kawasaki tyd®], and the other, where the order
fixed length, moving along a line and with internal degreesparameter is not conserved, related to the single spin-flip
of freedom. They found an exact solution that incorporatesGlauber kinetic§10]. We show that this model, albeit very
excluded volume effects and molecular attraction. They haveimple, is capable of predicting a change in the slope of the
shown that, at low molecular concentrations, the curve of theurve of the free amphiphilic molecules against total concen-
chemical potential against molecular density changes itgration. We also show that the distribution curve for the ag-
slope at a given concentration. This could be interpreted agregate sizes does not exhibit the local minimum and maxi-
the equivalent to the CM(critical micellar concentration ~ mum characteristic of micellized systerfs§]. For a typical
which is in qualitative agreement with real systems of am-system in its micellar state, the local minimum in the
phiphilic molecules. Kolomeisky and Widoff8] also con- aggregate-size distribution curve lies always below the con-
sidered a one-dimensional lattice model for the hydrophobicentration of free amphiphiles, and it is different from zero.
attraction. In their model, the accomodation of the soluteThe local maximum in this curve, which appears for larger
molecules in the lattice depends on the state of nearestalues of the aggregate size than that observed at the mini-
mum, indicates the typical size of the micelles. This work is
organized as follows. In Sec. Il we present the model and the
*Email address: girardi@fisica.ufsc.br calculations. In Sec. lll we describe the Monte Carlo simu-
"Email address: wagner@fisica.ufsc.br lations. In Sec. IV we present our results and conclusions.
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Il. MODEL AND CALCULATIONS

1 a
We consider a lattice model to describe the aggregation of A= 2 1+ b +ab
amphiphilic molecules in a solvent. The simplest model we
can imagine is a linear array of sites, where each site is a a2
occupied by an amphiphilic or by a solute molecule. We + (1—25—2ab+—2+2a2+azb2+8a ,
choose to represent these molecules in the language of spins, b

and we make use of the spin 1 Ising model, with three pos- (5)

sible components. In this way, to each solute molecule we

associate the zero component of the spin, and the two othand we defined=exp(Bw) andb=exp(BJ).

components £ 1) are attached to the amphiphilic molecules. In the next step we define the probability to find an ag-
For instance, the valuest(1) are related to the hydrophobic gregate of sizen in the system. It is chosen as the sequence
and hydrophilic properties of the amphiphilic molecules. If(0x1*+1*+1...-=1* 10), where we haven nonzero

two nearest neighbor amphiphiles have the same value of trepin components between two zero components. Therefore,
spin components, it can be thought that two hydrocarborthe probabilility is given by

chains are touching each other in a real solution. On the

other hand, two antiparallel spin components mimic the re-  P(S¢,Sc+1, -+ Scint1:Skn+2/0,£1, ..., =1,0)

pulsion between the hydrophilic head and the hydrophobic

chain of the amphiphile. We define an aggregate in one di- =P(S)

mension by a set of spin components 1) placed between 1

two zero spin components. There is no difference between an ==(0s,01=05, 0 (1=68s 06 0
up and down component of the spin inside the aggregate, but -

the different orientations of spins can take into account the (6)

possible values of the aggregate energy. In order to simulate

a fixed concentration in the real solution, in this model, theWhere the brackets mean

number of zero spin components is made constant. We de-

fine the following Hamiltonian model for the system: <8>:2 H SeﬂJasi+1+(BMIZ)(S)ZJr(,BM/Z)(SHl)Z, (7)
{s}i=1
L
’H:—JZ SSi.1, ) and the5$k,0 are the delta’s Kronecker. Definin@sk,(,:l
=1 —Sﬁ, and using the transfer matrix, we can write the equa-

tion
where J represents the coupling constant between nearest

neighbor spins, and is the linear size of the lattice. By 1

imposing periodic boundary conditions, we hase, ;=S;. P(S)==T(UT'RU)- U H(1-S)R---R

The constraint of constant number of zero spin components - B

can easily be handled by employing the formalism of the X (1-S%)U], €]
grand-canonical ensemble. The grand-partition function is -

expressed by the equation where Tr means the trace of the matrikjs the matrix that

diagonalizes the transfer matiX 1 is the unity matrix and
L Sis the matrix representation of the spin. This last equation
= E e PNz, (2 can be used, after we take the thermodynamic limitw, to
N=0 find the distribution of the aggregate size as a function of
temperature and the chemical potential. Also using the for-
whereB=1/KkgT, andkg is the Boltzmann constant is the  malism of the transfer matrix we obtain, in the thermody-
chemical potentiaIN=E:‘:1(Si)2 is the number of amphi- namic limit, the density of amphiphiles, that is given by
philes, andZ is the canonical partition function for a fixex

I

The grand-partition function can also be written in the form _ 1 (be+ ab’-~b—3a)(2b*+bc—b+a+ab’) ©
4 bc(ab?—a—b+b?) ’
E=2 Il R(s,S40), (3)  where
{Sti=1
2 2 _ \/ a a2 2 2K2
where R(S ’3+1):e/3-]33+1+(:3#/2)(3) +(Bul2) (S +1) . are c= 1—25—2ab+ E-an +a‘h-+8a|.

the elements of the 83 transfer matrix. Finally, in the ther-
modynamic limit, the grand-canonical potential density is
Ill. MONTE CARLO SIMULATIONS

®=—(B)tIn(\), (4) We have performed Monte Carlo simulations in order to
understand the underlying mechanism that leads the system
where\ is the largest eingenvalue of the transfer matrix thatowards its equilibrium state. We used linear sizes up to
can be written as =10* and we have taken into account periodic boundary
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FIG. 1. Reduced chemical potentjgp versus total concentra- EZ?\;?/?;:at'on fop3J=0.5. The dashed line indicates the ideal gas

tion p. This isotherm was obtained f@J=2.5.

conditions. We also used different initial random configura-+— the lattice is saturated by amphiphiles, and this corre-
tions to guarantee that the final equilibrium state is the saméPonds, in our case, to the usig# 1/2 Ising model. In the
First of all, we define the concentration by fixing the numberrégime of very small densities, we have almost isolated am-
of zero spin component in the system. The dynamics emphiphiles, and the behavior is that of the ideal gas, where
ployed here is a mixture of two different stochastic processe§8#) is a logarithmic function of the density. In Fig. 2, we
[11]: one of them is the exchange Kawasaki process, wherghow the density of isolated amphiphiles as a function of the
two nearest neighbor spins are exchanged accordingly witiptal density for a fixed temperature. As to be expected, at
the Metropolis prescriptiofil2]. For this dynamical process Very small densities, the slope of the curve is equal to 1.
the order parameter is conserved, which in our case islowever, slightly increasing the total density, the slope of
equivalent to keep constant the concentration of the solutiof€ curve in Fig. 2 decreases, and we can associate this fact
( the number of zero spin component is fixe@he other with the appearance of small aggregates inside the solution.
dynamical process used here is the single spin-flip Glaubefhe plot of Fig. 2 resembles with the typical CMC curves
kinetics where a giverr 1 spin is also flipped if it satisfies observed in micellar systems. However, this is not sufficient
the Metropolis rule. This special Glauber mechanismt© characterize these aggregates as being true micelles. It is
changes the order parameter without changing the concentri€ll accepted in the literature of micellar systefss that,

tion. We follow the steps described below to find the equi-With the exception of CMC curves, to characterize a true
librium states of the system for given values of temperatureMicellar aggregate, it is necessary the presence of a local
concentration and, that gives the probability to perform the minimum and a local maximum in the distribution curve of
Kawasaki process in each stithe probability of choose the aggregates. We already used this property to study the be-
Glauber process is (1q)]: we choose at random a site in havior of two- and three-dimensional diluted systems as a
the lattice, and a random number to select the process finction of temperatur¢13,14. We have shown in these
apply. If the Kawasaki process is chosen, we select at ranvorks that the parameter that controls the micellization pro-
dom a nearest neighbor of the given site and we exchang@ess is the difference in height between the maximum and
them if they satisfies the requirements of Metropolis pre_the minimum of the distribution curve. This difference in

scription. On the other hand, if the Glauber process is chob€ight vanishes linearly with temperature in two dimensions,

satisfies the Metropolis rule. To attain the equilibrium wecases we defined a temperature at which the difference in
need nearly X10* Monte Carlo stepgMCs), where each height becomes zero, and it represents a transition from the
MCs represents random trials to select a spin in the lattice. Micellar to a nonmicellar state. We present in Fig. 3 the plot

After thermalization we used $QMICs to obtain the mean We obtain for the distribution curve of aggregate sieéor
value of the aggregate size distribution. the same temperature and concentration in the range of Fig.

2. As we can see, the distribution curve is monotonically
decreasing with the aggregate size. Then, there is no typical
aggregate, and the system does not exhibit a true micellar
We exhibit in Fig. 1 the plot of the isotherm of the re- behavior. The behavior observed in Fig. 3 is qualitatively the
duced chemical potenciaB) as a function of the number same up to densities of 20%. For higher values of density,
density of amphiphilesd). It is easy to see, that in the limit the curve exhibits a single local maximum, but never shows

IV. RESULTS AND CONCLUSIONS
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FIG. 3. Distribution functiomp(n) as a function of the size of
the aggregates for total concentratiop=>5.5% andgJ=2.5. The FIG. 5. Distribution functionnp(n) as a function of the total
lines serve to guide the eyes. concentrationp for different aggregate sizes, as indicated in the

figure. We useq@3J=2.5.
up the corresponding local minimum, as we can see in Fig. 4,
for the particular value of density=50%. The general be- cannot change the size of the aggregates at any time. The
havior observed in Figs. 3 and 4, can be obtained from Figenly effect here is to change the value of order parameter,
5, where we exhibit, for each aggregate size, the density afhich is reflected only in the energy of the aggregates. On
all molecules aggregated as a function of the total densitythe other hand, fog=1, that is, using only the exchange
From this very simple one-dimensional model, we can conkawasaki dynamics, the simulation results are still different
clude that it cannot support the existence of micelles. Werom the exact values. This happens because with this dy-
also exhibit in Fig. 4 the distribution curve of aggregate sizeshamics, which conserves the order parameter, only a finite
obtained through Monte Carlo simulations fgr=1/2. For  region of the phase space is explored. Finally, for any other
instance, in Fig. 6, choosing=0, that is, only the Glauber value ofq, the simulation curve and the exact one coincide
dynamics is present, the distribution of aggregate sizes ifor all aggregate sizes. This clearly indicates that both dy-
exactly that random one that we generate at the beggining of
the simulation. This is expected, because the Glauber proces~  o0.14
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5 n 10 15 FIG. 6. Distribution functiomp(n) as a function of the size of
the aggregates for 8J=2.5 and total concentratign=50%. The
FIG. 4. Distribution functiomp(n) as a function of the size of full line is the exact result and the connected circles represent
the aggregates for total concentratiop=50% andBJ=2.5. The = Monte Carlo simulation results fay=1 (pure Kawasaki dynam-
line represents the exact solution and the small circles are the rées). The connected crosses give Monte Carlo results|fof (pure
sults of Monte Carlo simulation fogq=1/2. Glauber dynamigs
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dimensional model of aggregation of amphiphiles to under-
stand the process of micellization. The model was mapped
onto a spinS=1 Ising model where the density of the solu-
tion was associated to the number of zero spin components.
We were able to solve it exactly to obtain the densities of
aggregate sizes as a function of total density, temperature,
and the chemical potential. We also performed Monte Carlo
simulations on this model and we demonstrated that the equi-
librium states can only be attained through a combination of
Glauber and Kawasaki dynamical processes. The model ex-
hibits some characteristics similar to that of micellar sys-
tems, but the aggregate-size distribution curve does not show
up the minimum and maximum that must be present in a
micellized system. Although in Fig. 4 we observe a local
maximum, we cannot say that this behavior caracterizes a
true micellar system. The presence of the minimum in the
distribution curve, below the free amphiphile concentration,
is necessary. The disappearance of this minimum would lead
to the coalescence of the two relaxation processes involved
in the kinetics of micellization: the fast process, which ac-
counts for the exchange of monomeric surfactants between

FIG. 7. Free amphiphile concentration as a function of totalmicelles and solution, and the slow process, attributed to the

concentration for8J=2.5. The full line is the exact result and
crosses represent the Monte Carlo resultsgferl/2.

micelle formation breakdowrj15]. The model does not
present any phase transition, and the transition from the mi-
cellar to nonmicellar state is absent.

namical processes are essential to describe the evolution of

the system towards the equilibrium states. Figure 7 displays
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